An entropy-like proximal algorithm and the exponential multiplier method for symmetric cone programming

نویسندگان

  • Jein-Shan Chen
  • Shaohua Pan
چکیده

We introduce an entropy-like proximal algorithm for the problem of minimizing a closed proper convex function subject to the symmetric cone constraint. The algorithm is based on a distance-like function that is an extension of the Kullback-Leiber relative entropy to the setting of symmetric cones. Like the proximal algorithm for convex programming with nonnegative orthant cone constraint, we show that, under some mild assumptions, the sequence generated by the proposed algorithm is bounded and every accumulation point is a solution of the considered problem. In addition, we also present a dual application of the proposed algorithm to the symmetric cone linear program, leading to a multiplier method which is shown to enjoy properties similar to the exponential multiplier method in [29].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An entropy-like proximal algorithm and the exponential multiplier method for convex symmetric cone programming

We introduce an entropy-like proximal algorithm for the problem of minimizing a closed proper convex function subject to symmetric cone constraints. The algorithm is based on a distance-like function that is an extension of the Kullback-Leiber relative entropy to the setting of symmetric cones. Like the proximal algorithms for convex programming with nonnegative orthant cone constraints, we sho...

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

On the convergence of the exponential multiplier method for convex programming

In this paper, we analyze the exponential method of multipliers for convex constrained minimization problems, which operates like the usual Augmented Lagrangian method, except that it uses an exponential penalty function in place of the usual quadratic. We also analyze a dual counterpart, the entropy minimization algorithm, which operates like the proximal minimization algorithm, except that it...

متن کامل

A full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity

In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...

متن کامل

A Class of Interior Proximal-Like Algorithms for Convex Second-Order Cone Programming

We propose a class of interior proximal-like algorithms for the second-order cone program which is to minimize a closed proper convex function subject to general second-order cone constraints. The class of methods uses a distance measure generated by a twice continuously differentiable strictly convex function on (0,+∞), and includes as a special case the entropy-like proximal algorithm [12] wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007